Recombinagenic processing of UV-light photoproducts in nonreplicating phage DNA by the Escherichia coli methyl-directed mismatch repair system.

نویسندگان

  • W Y Feng
  • E H Lee
  • J B Hays
چکیده

Nonreplicating lambda phage DNA in homoimmune Escherichia coli lysogens provides a useful model system for study of processes that activate DNA for homologous recombination. We measured recombination by extracting phage DNA from infected cells, using it to transfect recA recipient cells, and scoring the frequency of recombinant infective centers. With unirradiated phage, recombinant frequencies were less than 0.1%. However, recombination could be increased over 300-fold by prior UV irradiation of the phages. The dependence of recombination on UvrA function varied greatly with UV dose. With phage irradiated to 20 J/m2, recombinant frequencies in repressed infections of uvr+ bacteria were one-fifth those in uvrA infections; with phages irradiated to 100 J/m2, frequencies in uvr+ infections were thirty times higher than in uvrA infections. Most UV-stimulated recombination in uvrA infections appeared to depend on the bacterial methyl-directed mismatch-repair system: frequencies were depressed 5-20-fold in uvrA bacteria also lacking MutH, MutL or MutS functions, and recombinant frequencies decreased with increasing GATC-adenine methylation of phage stocks. The biological activity of nonreplicating UV-irradiated phage DNA declined with time after infection of uvrA cells; this decline was photoproduct-dependent, more marked for undermethylated than overmethylated phage DNA, and depended on host MutHLS functions. In uvr+ bacteria, where the UvrABC system provided an alternative, apparently less efficient, route to recombinagenic DNA, UV-stimulated recombinant frequencies were about twice as high in mutH or mutLS as in mut+ cells, in agreement with hyper-rec mut effects previously described by others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA structures generated during recombination initiated by mismatch repair of UV-irradiated nonreplicating phage DNA in Escherichia coli: requirements for helicase, exonucleases, and RecF and RecBCD functions.

During infection of homoimmune Escherichia coli lysogens ("repressed infections"), undamaged nonreplicating lambda phage DNA circles undergo very little recombination. Prior UV irradiation of phages dramatically elevates recombinant frequencies, even in bacteria deficient in UvrABC-mediated excision repair. We previously reported that 80-90% of this UvrABC-independent recombination required Mut...

متن کامل

Antagonism of ultraviolet-light mutagenesis by the methyl-directed mismatch-repair system of Escherichia coli.

Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2.MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to "matched" photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce...

متن کامل

UV- and MMS-induced mutagenesis of lambdaO(am)8 phage under nonpermissive conditions for phage DNA replication.

Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins,...

متن کامل

UV- and MMS-induced mutagenesis of O(am)8 phage under nonpermissive conditions for phage DNA replication

Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins,...

متن کامل

Specific binding of human MSH2.MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases.

Previous studies have demonstrated recognition of DNA-containing UV light photoproducts by bacterial (Feng, W.-Y., Lee, E., and Hays, J. B. (1991) Genetics 129, 1007-1020) and human (Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. (1997) Mol. Cell. Biol. 17, 760-769) long-patch mismatch-repair systems. Mismatch repair directed specifically against incorrect base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 129 4  شماره 

صفحات  -

تاریخ انتشار 1991